Compressing Measurements in Quantum Dynamic Parameter Estimation
نویسندگان
چکیده
We present methods that can provide an exponential savings in the resources required to perform dynamic parameter estimation using quantum systems. The key idea is to merge classical compressive sensing techniques with quantum control methods to efficiently estimate time-dependent parameters in the system Hamiltonian. We show that incoherent measurement bases and, more generally, suitable random measurement matrices can be created by performing simple control sequences on the quantum system. Since random measurement matrices satisfying the restricted isometry property can be used to reconstruct any sparse signal in an efficient manner, and many physical processes are approximately sparse in some basis, these methods can potentially be useful in a variety of applications such as quantum sensing and magnetometry. We illustrate the theoretical results throughout the presentation with various practically relevant numerical examples.
منابع مشابه
Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملGeneralized limits for single-parameter quantum estimation.
We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multisystem interactions. For a Hamiltonian with k-system parameter-sensitive terms, the quantum limit scales as 1/Nk, where N is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter-independent in...
متن کاملDurham E-Theses Adaptive Parameter Estimation of Power System Dynamic Models Using Modal Information
Knowledge of the parameter values of the dynamic generator models is of paramount importance for creating accurate models for power system dynamics studies. Traditionally, power systems consists of a relatively limited numbers of large power stations and the values of generator parameters were provided by manufacturers and validated by utilities. Recently however, with the increasing penetratio...
متن کاملQuantum Limits on Parameter Estimation
We present a new proof of the quantum Cramer-Rao bound for precision parameter estimation [1–3] and extend it to a more general class of measurement procedures. We analyze a generalized framework for parameter estimation that covers most experimentally accessible situations, where multiple rounds of measurements, auxiliary systems or external control of the evolution are available. The proof pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013